方案模版网 >地图 >综合分类 >

比的应用课件

比的应用课件

时间:2025-05-09 作者:方案模版网

比的应用课件(集锦3篇)。

比的应用课件 篇1

教学要求:

1。使学生加深理解比与除法、分数的关系,能用不同的表述方法说明比、分数和倍数关系的含义。

2。使学生进一步学会应用不同的知识解答比和比例的应用题,培养学生灵活、合理地解答应用题的能力。

教学过程:

一、揭示课题

1、口算。

让学生口算练习二十二第3题。

2、引入课题。

我们已经复习了比和比例的知识,知道了比和除法、分数之间的联系,根据这样的联系,对于比和比例应用题,可以用不同的方法来解答。这节课,我们来复习用不同的方法解答比和比例应用题。(板书课题)通过复习,要学会用不同的知识解答同一道应用题,提高灵活、合理地解答应用题的能力。

二、复习比与除法、分数的关系

1、提问:比与除法、分数有什么关系?

2、出示:甲数与乙数的比是1 :4。提问:根据甲数与乙数的比是1 :4,你能用分数、倍数关系表示甲数与乙数的关系吗?

3、做练习二十二第4题。

小黑板出示。指名一人板演,其余学生做在课本上。集体订正,选择两题让学生说说是怎样想的。

三、用不同方法解答应用题

l,说明:对于一个比或一个分数、倍数,我们都可以从不同的角度来理解数量之间的关系。这样,就可以用不同的知识来解答关于比和比例方面的应用题。

2、做“练一练”第1题。

让学生读题,再说一说80克盐这个数量与比的哪一部分是对应的。提问:盐和水的重量比1 :15可以怎样理解?提问:按照1 :15这三种角度的理解,题里已知盐重80克,你能用三种不同的方法解答吗?请同学们做在练习本上,如果有困难,再看看书上是怎样想的。(老师巡视辅导)指名学生口答算式,老师板书三种解法。提问:第一种解法为什么用80×15可以求出加水的重量?这样做的数量关系是怎样的?第二种解法按怎样的数量关系列等式的?为什么用方程解答?第三种解法是按怎样的方法解答的?列比例的依据是什么?提问:这三种不同的解法,都是根据哪个条件来找数量之间的关系的?指出:这三种解法虽然不同,但都是根据盐和水的重量比1 :15这个条件,从倍数、分数和比的意义这三个不同的角度来找出盐和水的重量之间的关系,得出相应的三种解法,求出了问题的结果。

3、做“练—练”第2题。

学生读题。指名板演,其余学生做在练习本上。集体订正,让学生说说各是怎样想的。注意学生中的不同解法。

4、做练习二十二第5题。

让学生默读题目,找一找三道题的相同点和不同点。谁来说一说,每题里元数与份数是怎样对应的?指名三人板演,其余学生做在练习本上,要求学生每道题用两种方法列出算式,不要计算结果。集体订正,让学生说说每种解法是怎样想的。追问:这里都是把哪个条件经过转化后找出不同解法的?

5、讨论练习二十二第6题。

请大家比较一下,这两题有什么相同和不同的地方?合唱组人数是舞蹈组的2倍可以怎样理解?两题里的人数对应的'份数各是怎样的?

6、做练习二十二第7题。

让学生比较相同点和不同点。提问:第(1)题男衬衫和女衬衫件数的比是几比几?第(2)题男衬衫和女衬衫件数的比是几比几?这里两道题请同学们都用两种方法解答。指名两人板演,其余学生在练习本上列出算式。集体订正。提问:用分数知识解答这两道题列出的方程为什么不一样?各是按怎样的数量关系列方程的?用比的知识解答这两道题时列出的式子有什么不一样?为什么会不一样?还有没有不同的解法?指出:解答应用题要根据题意,弄清题里的数量关系,根据数量关系列式解答。

四、课堂小结

提问:比和比例应用题,或者倍数、分数应用题,用不同知识解答时,主要把哪个条件从不同角度理解的?(用比、分数或倍数表示两种量关系的条件)指出:由于表示两个数量关系的条件可以从不同角度理解,所以,解题时就可以根据每次理解这个条件的知识,用相应的方法灵活、合理地解答。

五、布置作业

课堂作业:练习二十二第6、8题。

家庭作业:“练一练”第3题。

比的应用课件 篇2

教学内容:

课本 练习五

教学目标:

通过练习使学生进一步掌握有关倍数的三步计算应用题,能正确熟练地解答此类应用题,促进学生综合分析能力的提高。

教学重点:掌握有关倍数的三步计算应用题

教学用具:幻灯、小黑板

教学过程:

一、基本训练

1、口答

同学们做了12朵黄花,做的红花的朵数比黄花的3倍多4朵。

⑴红花做了多少朵?

⑵黄花的红花一共做了多少朵?

⑶红花比黄花多做了多少朵?

学生口答老师板书,同时问其他学生各步所表示的意义

2、说图意并列式

11岁

小明:

大6岁

爸爸:

大25岁

爷爷:

二、补问题,再解答。

补充完整使应用题使其成为三步计算应用题。

校园里有月季花46盆,菊花的盆数比月季花的3倍少20盆。

三、基本练习

1、红丰农场种油菜12公顷,种小麦的数量是油菜的2倍,种大麦的'数量比种油菜和小麦总和还多4公顷。种大麦多少公顷?

2、红丰农场种油菜12公顷,种小麦的数量比油菜的2倍少5公顷。种油菜和小麦共多少公顷?

3、红丰农场种油菜12公顷,种小麦的数量是油菜的2倍,种大麦的数量比小麦的3倍少9公顷。种大麦多少公顷?

4、红丰农场种小麦24公顷,种大麦的数量比小麦的3倍少9公顷。大麦比小麦多种了多少公顷?

四、编题练习

要求学生自己编一题 倍数关系的三步计算应用题。

一人编好后,前后4人任选一题,进行解答,再一起批改。

五、课堂作业

课本 练习五 第3-6题

比的应用课件 篇3

1、有一批零件,甲、乙两人同时加工,12天完成,乙、丙两人同时加工,9天完成,甲、丙两人同时加工,18天完成,三人同时加工,几天可以完成?

2、小明身上的钱可以买12枝铅笔或4块橡皮,他先买了3枝铅笔,剩下的钱可以买几块橡皮?

3、加工一批零件,第一天和第二天各完成了这批零件的2/9,第三天加工了80个,正好完成了加工任务,这批零件共有多少个?

4、电视机厂五月份计划生产电视机5000台,实际生产了6000台,超额完成百分之几?

5、一种电脑原价6800元,现降价1700元,降价百分之几?

6、一段路,甲走完全程需20分钟,乙走完全成需15分钟,甲的速度是乙速度的百分之几?

7、一份稿件,原计划5天抄完,结果只用4天就抄完了,实际工作效率比计划提高了百分之几?

8、从甲堆煤中,取出1/5给乙堆,这时两堆煤重量就相等了,原来乙堆煤的重量比甲堆煤的重量少百分之几?

9、六(1)班有男生32人,女生28人。六(2)班人数是六(1)班的95%,六(2)班有多少人?

10、一条围巾,如果卖100元,可赚25%,如果卖120元,可赚百分之几?

11、买来足球55个,买来的篮球比足球少20%,买来篮球多少个?

12、一堆沙子,第一次运走40%。第二次运走30%,还剩下48吨。这堆沙子有多少吨?

13、一个面粉厂,用20吨小麦能磨出13000千克的面粉。求小麦的出粉率?

14、在100克水中,加入25克盐。这盐水的含盐率是多少?

15、某种菜籽出油率为33%,要想榨出100千克菜籽油。至少要多少千克菜籽。

16、李师傅加工200个零件,经检验4个是废品,合格率是多少?照这样计算,加工700个零件,不合格的有多少个。

17、小红的爸爸将5000元钱存入银行活期储蓄,月利率是0.60%,4个月后,他可得税后利息多少元?可取回本金和利息共有多少元?

18、王老师每月工资1450元,超出1200元的部分按5%交纳个人所得税。王老师每月税后工资是多少元?

19、一种篮球原价180元,现在按原价的七五折出售。这种篮球现价每只多少元?每只便宜了多少元?

20、李丹家去年收玉米300千克,前年收玉米249千克,去年比前年的玉米增产了几成?

参考答案

1、三人同时加工需要8天

2、还可以买3块橡皮(12支铅笔=4块橡皮,说明1块橡皮=3支铅笔)

3、这批零件共有144个

4、超额完成了20%

5、降价25%

6、甲速度是乙速度的75%

7、实际工作效率比计划提高了25%

8、乙堆煤的重量比甲堆煤少40%

9、六(2)班有57人

10、分两种情况回答(即销售利润率和成本利润率):

①如果是相对于价格的.25%:则利润为100×25%=25,所以成本应该是100-25=75

卖120元时,利润为120-75=45,所以此时的销售利润率为45÷120=37.5%

②如果是相对于成本的25%:设成本为X,则(100-X)÷X=25%,解得X=80,所以成本为80,当售价为120时,利润为120-80=40,所以成本利润率为40/80=50%

11、篮球有44个

12、这堆沙子有160吨

13、小麦的出粉率是65%

14、这盐水的含盐率是20%

15、至少需要303千克菜籽

16、合格率98%;700个中不合格的有14个

17、可得税后利息96元;可取回本金和利息一共5096元

18、王老师每月税后工资1437.5元

19、这种篮球现价每只135元,每只便宜了45元

20、去年比前年的玉米增产了2成

本文来源:http://www.gmb5.com/g/21587.html